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General Ingredients for Pytorch

1. The model (defined in an nn.module object)
maps X to y_pred 

2. The loss function
evaluates ypred versus y

3. The training loop

runs the model and loss in loop with 
gradient descent. 



class LogReg(nn.Module):

    def __init__(self, num_feats, learn_rate = 0.01, device = torch.device("cpu") ):
        #the constructor; define any layer objects (e.g. Linear)
        super(LogReg, self).__init__()
        self.linear = nn.Linear(num_feats+1, 1) #add 1 to features for intercept

    def forward(self, X):
        #This is where the model itself is defined.
        #For binary logistic regression the model takes in X and returns
        #a probability (a value between 0 and 1)

        newX = torch.cat((X, torch.ones(X.shape[0], 1)), 1) #add intercept

        return 1/(1 + torch.exp(-self.linear(newX))) #log func on the linear output

1. The model 
maps X (features) to ypred (prediction of y)
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1. The model 
maps X (features) to ypred (prediction of y)

import torch
import torch.nn as nn 



 "log loss" or "normalized log loss": 



2. The loss function
evaluates ypred versus y

#e.g. 
def normalizedLogLoss(ypred, ytrue):
    ##Given:
    #  ypred - a vector (torch 1-d tensor) of predictions from the model.
    #          these are probabilities (values between 0 and 1)
    #  ytrue - a vector (torch 1-d tensor) of the true labels
    #Output:
    #  the logloss

    logloss = -1*torch.sum(ytrue*torch.log(ypred) + (1 - ytrue)*torch.log(1-ypred))
    N = ytrue.shape[0]
    normlogloss = (1/N)*logloss

    return normlogloss

    #alternative: return torch.nn.BCELoss(size_average=True)(ypred, ytrue)

    



(http://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/)

 "log loss" or "normalized log loss": 



    #runs the training loop of pytorch model:
    sgd = torch.optim.SGD(model.parameters(), lr=learning_rate) #gradient descent
    loss_func = nn.CrossEntropyLoss() #includes log

    #training loop:
    for i in range(epochs):
        model.train() #tells pytorch we are training
        sgd.zero_grad() #sets the gradients to 0

        #forward pass:
        ypred = model(Xtrain)
        loss = loss_func(ypred, ytrain)
        
        #backward pass: runs gradient descent (or variant)
        loss.backward() #computes gradients
        sgd.step()      #updates parameters

        if i % 20 == 0:
            print("  epoch: %d, loss: %.5f" %(i, loss.item()))

    

3. The training loop
runs the model and loss in loop with gradient descent. 
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Training is done: how do I get predictions? 

Easy! 



        ypred = model(X)

Training is done: how do I get predictions? 

Easy! 



From binary logistic regression 
to multiclass softmax

Two updates

● Model (forward method)

● Loss function



Pytorch Specifics: Model
class LogReg(nn.Module):
 ...

    def forward(self, X):
        #This is where the model itself is defined.
        #For logistic regression the model takes in X and returns
        #the results of a decision function

        newX = torch.cat((X, torch.ones(X.shape[0], 1)), 1) #add intercept
        
        return 1/(1 + torch.exp(-self.linear(newX))) 

#logistic function on the linear output



Pytorch Specifics: Model
class MultiClassLogReg(nn.Module):
    def __init__(self, num_feats, num_classes, 
                 learn_rate = 0.01, device = torch.device("cpu") ):
        #the constructor; define any layer objects (e.g. Linear)
        super(LogReg, self).__init__()
        self.linear = nn.Linear(num_feats+1, num_classes) 

    def forward(self, X):
        #This is where the model itself is defined.
        #For logistic regression the model takes in X and returns
        #the results of a decision function

        newX = torch.cat((X, torch.ones(X.shape[0], 1)), 1) #add intercept
        
        #return 1/(1 + torch.exp(-self.linear(newX))) 

#logistic function on the linear output

   return self.linear(newX) #only use linear if using cross-entropy loss



Pytorch Specifics: loss
    #runs the training loop of pytorch model:
    sgd = torch.optim.SGD(model.parameters(), lr=learning_rate)
    loss_func = nn.CrossEntropyLoss() #includes log

    #training loop:
    for i in range(epochs):
        model.train()
        sgd.zero_grad()
        #forward pass:
        ypred = model(X)
        loss = loss_func(ypred, y)
        #backward: /(applies gradient descent)
        loss.backward()
        sgd.step()

        if i % 20 == 0:
            print("  epoch: %d, loss: %.5f" %(i, loss.item()))



Two equivalent options for multi-class:
option 1 (what the previous slides covered)
#in model/forward:

   return self.linear(newX) #only use linear if using cross-entropy loss

#in loss/train: 
        loss_func = nn.CrossEntropyLoss() #includes log softmax

     #alternative: nn.NLLLoss() #negative log likelikelihood loss

option 2
#in model/forward:

   return nn.log_softmax(self.linear(newX)) #log softmax is multiclass

#in loss/train: 
        loss_func = nn.NLLLoss() #negative log likelikelihood loss


