
PyTorch Supplement

CSE354 - Spring 2021
Natural Language Processing

General Ingredients for Pytorch

1. The model (defined in an nn.module object)

2. The loss function

3. The training loop

General Ingredients for Pytorch

1. The model (defined in an nn.module object)
maps X to y_pred

2. The loss function
evaluates ypred versus y

3. The training loop

runs the model and loss in loop with
gradient descent.

class LogReg(nn.Module):

 def __init__(self, num_feats, learn_rate = 0.01, device = torch.device("cpu")):
 #the constructor; define any layer objects (e.g. Linear)
 super(LogReg, self).__init__()
 self.linear = nn.Linear(num_feats+1, 1) #add 1 to features for intercept

 def forward(self, X):
 #This is where the model itself is defined.
 #For binary logistic regression the model takes in X and returns
 #a probability (a value between 0 and 1)

 newX = torch.cat((X, torch.ones(X.shape[0], 1)), 1) #add intercept

 return 1/(1 + torch.exp(-self.linear(newX))) #log func on the linear output

1. The model
maps X (features) to ypred (prediction of y)

class LogReg(nn.Module):

 def __init__(self, num_feats, learn_rate = 0.01, device = torch.device("cpu")):
 #the constructor; define any layer objects (e.g. Linear)
 super(LogReg, self).__init__()
 self.linear = nn.Linear(num_feats+1, 1) #add 1 to features for intercept

 def forward(self, X):
 #This is where the model itself is defined.
 #For binary logistic regression the model takes in X and returns
 #a probability (a value between 0 and 1)

 newX = torch.cat((X, torch.ones(X.shape[0], 1)), 1) #add intercept

 return 1/(1 + torch.exp(-self.linear(newX))) #log func on the linear output

1. The model
maps X (features) to ypred (prediction of y)

import torch
import torch.nn as nn

 "log loss" or "normalized log loss":

2. The loss function
evaluates ypred versus y

#e.g.
def normalizedLogLoss(ypred, ytrue):
 ##Given:
 # ypred - a vector (torch 1-d tensor) of predictions from the model.
 # these are probabilities (values between 0 and 1)
 # ytrue - a vector (torch 1-d tensor) of the true labels
 #Output:
 # the logloss

 logloss = -1*torch.sum(ytrue*torch.log(ypred) + (1 - ytrue)*torch.log(1-ypred))
 N = ytrue.shape[0]
 normlogloss = (1/N)*logloss

 return normlogloss

 #alternative: return torch.nn.BCELoss(size_average=True)(ypred, ytrue)

(http://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/)

 "log loss" or "normalized log loss":

 #runs the training loop of pytorch model:
 sgd = torch.optim.SGD(model.parameters(), lr=learning_rate) #gradient descent
 loss_func = nn.CrossEntropyLoss() #includes log

 #training loop:
 for i in range(epochs):
 model.train() #tells pytorch we are training
 sgd.zero_grad() #sets the gradients to 0

 #forward pass:
 ypred = model(Xtrain)
 loss = loss_func(ypred, ytrain)

 #backward pass: runs gradient descent (or variant)
 loss.backward() #computes gradients
 sgd.step() #updates parameters

 if i % 20 == 0:
 print(" epoch: %d, loss: %.5f" %(i, loss.item()))

3. The training loop
runs the model and loss in loop with gradient descent.

 #training loop:
 for i in range(epochs):
 model.train() #tells pytorch we are training
 sgd.zero_grad() #sets the gradients to 0

 #forward pass:
 ypred = model(Xtrain)
 loss = loss_func(ypred, ytrain)

 #backward pass: runs gradient descent (or variant)
 loss.backward() #computes gradients
 sgd.step() #updates parameters

 if i % 20 == 0:
 print(" epoch: %d, loss: %.5f" %(i, loss.item()))

3. The training loop
runs the model and loss in loop with gradient descent.

Training is done: how do I get predictions?

Easy!

 ypred = model(X)

Training is done: how do I get predictions?

Easy!

From binary logistic regression
to multiclass softmax

Two updates

● Model (forward method)

● Loss function

Pytorch Specifics: Model
class LogReg(nn.Module):
 ...

 def forward(self, X):
 #This is where the model itself is defined.
 #For logistic regression the model takes in X and returns
 #the results of a decision function

 newX = torch.cat((X, torch.ones(X.shape[0], 1)), 1) #add intercept

 return 1/(1 + torch.exp(-self.linear(newX)))

#logistic function on the linear output

Pytorch Specifics: Model
class MultiClassLogReg(nn.Module):
 def __init__(self, num_feats, num_classes,
 learn_rate = 0.01, device = torch.device("cpu")):
 #the constructor; define any layer objects (e.g. Linear)
 super(LogReg, self).__init__()
 self.linear = nn.Linear(num_feats+1, num_classes)

 def forward(self, X):
 #This is where the model itself is defined.
 #For logistic regression the model takes in X and returns
 #the results of a decision function

 newX = torch.cat((X, torch.ones(X.shape[0], 1)), 1) #add intercept

 #return 1/(1 + torch.exp(-self.linear(newX)))

#logistic function on the linear output

 return self.linear(newX) #only use linear if using cross-entropy loss

Pytorch Specifics: loss
 #runs the training loop of pytorch model:
 sgd = torch.optim.SGD(model.parameters(), lr=learning_rate)
 loss_func = nn.CrossEntropyLoss() #includes log

 #training loop:
 for i in range(epochs):
 model.train()
 sgd.zero_grad()
 #forward pass:
 ypred = model(X)
 loss = loss_func(ypred, y)
 #backward: /(applies gradient descent)
 loss.backward()
 sgd.step()

 if i % 20 == 0:
 print(" epoch: %d, loss: %.5f" %(i, loss.item()))

Two equivalent options for multi-class:
option 1 (what the previous slides covered)
#in model/forward:

 return self.linear(newX) #only use linear if using cross-entropy loss

#in loss/train:
 loss_func = nn.CrossEntropyLoss() #includes log softmax

 #alternative: nn.NLLLoss() #negative log likelikelihood loss

option 2
#in model/forward:

 return nn.log_softmax(self.linear(newX)) #log softmax is multiclass

#in loss/train:
 loss_func = nn.NLLLoss() #negative log likelikelihood loss

